Surname

Centre Number

Other Names

GCSE 4473/02

S15-4473-02

ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2 HIGHER TIER

P.M. WEDNESDAY, 20 May 2015

1 hour

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	11	
2.	7	
3.	6	
4.	14	
5.	13	
6.	9	
Total	60	

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2. In calculations you should show all your working.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answers to questions **3** and **6**(*b*).

Equations

power = voltage × current	P = VI
current = voltage resistance	$I = \frac{V}{R}$
power = $current^2 \times resistance$	$P = I^2 R$
speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
distance travelled = area under a velocity-time graph	
momentum = mass × velocity	p = mv
resultant force = mass × acceleration	F = ma
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
work = force × distance	W = Fd
kinetic energy = $\frac{\text{mass} \times \text{speed}^2}{2}$	$KE = \frac{1}{2}mv^2$
change in = mass × gravitational × change potential energy field strength in height	PE = mgh

SI multipliers

Prefix	Multiplier
р	10 ⁻¹²
n	10 ⁻⁹
μ	10 ⁻⁶
m	10 ⁻³

Prefix	Multiplier
k	10 ³
М	10 ⁶
G	10 ⁹
Т	10 ¹²

4473 020003

3

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Examiner only

- (iii) Explain why raising the boron control rods increases the energy released in the reactor. [2]
- (b) The table below shows different isotopes of uranium (U).

Isotope	Nuclear symbol
U-230	$^{230}_{92}$ U
U-234	²³⁴ ₉₂ U
U-235	²³⁵ ₉₂ U
U-238	²³⁸ U 92

(i) Tick (✓) the boxes next to **three** correct statements about the isotopes shown in the table.
 [3]

All the isotopes have nuclei which contain 92 neutrons

A nucleus of U-230 contains the least number of neutrons

A nucleus of U-235 contains 143 neutrons

A nucleus of U-234 contains 92 protons

A nucleus of U-238 contains 238 protons

- (ii) Complete the following nuclear equations which show the decay of two of the uranium isotopes listed in the table above. [2]
 - $^{238}_{92}U \rightarrow ^{4}_{2}He + ^{4}_{90}Th$
 - $\longrightarrow {}^{4}_{2}\text{He} + {}^{230}_{90}\text{Th}$

	Radioisotope	Half-life	Method of decay	
-	Tellurium-133	12 minutes	beta	
-	Astatine-211	7.2 hours	alpha	
-	Cobalt-60	5 years	beta and gamma	
-	Caesium-137	30 years	beta	
-	Americium-241	432 years	alpha	
(i)	Treating cancer by injon Name of radioisotope: Reasons: I.	ecting the radioisotop	e directly into the tumour.	
(ii)	To sterilise packaged	surgical instruments.		
	Name of radioisotope:			
	Reasons:			
	I			

9		
	Examine only	r
	6	
		1
		1473 02009
		, 0

4. The circuit shown is used to investigate how the current changes for different lengths of a wire. Each wire has the same thickness and is made from the same material.

The results from the experiment are displayed.

Length of wire (cm)	Voltage (V)	Current (A)
10	1.80	0.90
20	1.80	0.45
30	1.80	0.30
50	1.80	0.18
60	1.80	0.15
75	1.80	0.12

 (i)	The student carrying out the experiment cannot say if these results are
	repeatable. Explain what she should do to enable her to judge the repeatability of her data. [2]
······	
(ii)	The student correctly suggests that the resistance of the wire is directly proportional to its length . Explain how the results in the table agree with this statement. [3]
······	

(iv)	Describe the relationship between the length of the wire and the current . [2]
(v)	The wire used in the experiment had been labelled by the science technician as 0.2Ω /cm. Using your graph and the equation $V = IR$, explain if your results for a 45 cm length of wire agree with the information on the label. [4	 s h]
······		

	(iii)	The container of bricks is lifted through a height of 14 m. Using an equation from page 2, calculate the gain in gravitational potential energy whilst using the electric motor to lift the container of bricks. ($g = 10 \text{ N/kg}$) [2]	Examiner only
		potential energy gain =	I
	(iv)	State why the answers to parts (ii) and (iii) are different. [1]	
(b)	The It is I	motor is stopped when the container of bricks reaches a height of 14 m. held stationary above the ground.	
	(i)	Calculate the force in the cable. ($g = 10 \text{ N/kg}$) [2]	1
		force = N	1
	(ii) 	The cable snaps. Using Newton's laws, explain the motion of the container of bricks. [2]	F -
	(iii)	Using your answer to <i>(a)</i> (iii) and an equation from page 2, calculate the maximum impact velocity of the container of bricks as they hit the ground. [3]	1
		impact velocity = m/s	3
16		© WJEC CBAC Ltd. (4473-02)	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

TURN OVER FOR THE LAST QUESTION

		ין
(b)	A passenger in the car has a mass of 70 kg. Discuss how the resultant force on the passenger changes throughout the 80 s of the journey. [6 QWC]	
	Include in your answer:	
	 calculations to show the resultant force on the passenger at different stages in the journey; 	
	 an explanation of how the resultant force affects the motion of the passenger at all stages. 	
		_
	END OF PAPER	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		l

